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To Mary, Wesley, and Owen

DEDICATION

Cragged, and steep, Truth stands, and he that will  

Reach her, about must, and about must go, 

And what the hill’s suddenness resists, winne so.

—John Donne (1572-1631), Satire III
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T
his book is intended to provide students with a detailed guide to 

the reasoning that forms the basis for physical chemistry—the 

framework that unites all chemistry. he study of physical chemistry 

gives us the opportunity to look at our science as an integrated whole, 

with each concept connected to the next. My goal has been to trace those 

connections, step-by-step whenever possible, to show how each new 

concept makes sense given its place in the framework.

Because its ideas build upon each other in this way, physical chemistry 

can serve as the foundation for an intuitive understanding of chemistry in 

all its forms, whether synthesizing new compounds, analyzing samples 

in a forensic laboratory, or studying the properties of novel materials. 

To that end, this book emphasizes the shared, fundamental principles of 

chemistry, showing how we can justify the form and behavior of complex 

chemical systems by applying the laws of mathematics and physics to the 

structures of individual particles and then extrapolating to larger systems. 

We learn physical chemistry so that we can recognize these fundamental 

principles when we run into them in our other courses and in our careers. 

he relevance of this discipline extends beyond chemistry to engineering, 

physics, biology, and medicine: any ield in which the molecular structure 

of matter is important.

A key step toward cultivating an intuition about chemistry is a 

thorough and convincing presentation of these fundamentals. When we 

see not only what the ideas are, but also how they link together, those ideas 

become more discernible when we examine a new chemical system or 

process. he following features of this text seek to achieve that objective.

• My aim is to provide a rigorous treatment of the subject in a relaxed 

style. A combination of qualitative summaries and annotated, step-

by-step derivations illuminates the logic connecting the theory to 

the parameters that we can measure by experiment. Although we use 

a lot of math to justify the theory we are developing, the math will 

always make sense if we look at it carefully. We take advantage of this 

to strengthen our conidence in the results and our understanding 

of how the math relates to the physics. Nothing is more empowering 

in physical chemistry than inding that you can successfully predict 

a phenomenon using both mathematics and a qualitative physical 

argument. he manifestation of atomic and molecular structure in bulk 

properties of materials is a theme that informs the unhurried narrative 

throughout the text.

• To illustrate how our understanding in this ield continues to advance, we 

take the time to examine several tools commonly used in the laboratory, 

(“Tools of the Trade”) while proiles of contemporary scientists 

TO THE READER



(“Biosketches”) showcase the ever-expanding frontiers of physical 

chemistry. Our intuition about chemistry operates at a deep level, held 

together by the theoretical framework, but these examples show how 

others are applying their understanding to solve real problems in the 

laboratory and beyond. hey inspire us to think creatively about how 

the most fundamental chemical laws can answer our own questions 

about molecular structure and behavior.

• Our increasing appreciation and exploration of the interface between 

the molecular and the bulk scales has inspired a forward-looking 

coverage of topics that includes special attention to statistical mechanics 

throughout the volume.
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A Rigorous Standard 

with a Relaxed Style

A course in physical chemistry can describe the physical universe 

with uncommon depth, breadth, and clarity. The aim of this book 

is to help the reader make the most of the experience.
              —Andrew Cooksy

“
”

PHYSICAL CHEMISTRY is the framework that unites all chemistry—providing 

powerful insight into the discipline as an integrated series of connected concepts.

As an instructor and author, Andrew Cooksy helps students uncover these connections 

while showing how they can be expressed in mathematical form and demonstrating the 

power that derives from such expressions.

The text’s lively and relaxed narrative illuminates the relationship between the 

mathematical and the conceptual for students. By formulating the fundamental 

principles of physical chemistry in a mathematically precise but easily comprehensible 

way, students are able to acquire deeper insight—and greater mastery—than they 

ever thought possible.

This innovative approach is supported by several exclusive features:

• Split quantum and thermodynamics volumes can be taught in either 

order for maximum course � exibility. 

• A discrete chapter (Chapter A) included in each volume summarizes the 

physics and mathematics used in physical chemistry.

• Chapter opening sections orient the students within the larger context 

of physical chemistry, provide an overview of the chapter, preview the 

physical and mathematical relationships that will be utilized, and set 

de� ned chapter objectives.

• Unique pedagogical features include annotations for key steps in 

derivations and an innovative use of color to identify recurring elements 

in equations.



Re� ective of the author’s popular lecture strategy, chapter opening and closing 

features ground each topic within the larger framework of physical chemistry and 

help students stay oriented as they follow the development of chapter concepts.

Uncovering connections between 

foundational concepts

Visual Roadmaps help students 

see the relationship between the 

chapters in each part of the text 

and the topics in each chapter.

Learning Objectives outline 

the skills students should 

expect to acquire from their 

study of the chapter.

Goal: Why Are We Here? 

chapter openers prepare 

students for the work ahead 

using one to two simple 

sentences.

Context: Where Are We Now? 

helps students understand 

how the chapter they are 

starting is related to what has 

come before and its place in 

the unfolding development of 

physical chemistry.

Supporting Text: How Did 

We Get Here? reviews 

previously introduced 

concepts, mathematical 

tools, and topical 

relationships that the new 

chapter will draw on.

Context: Where Do We Go 

From Here? sections at the end 

of each chapter afford students 

a perspective on what they have 

just learned, and how it provides 

the foundation for the material 

explored in the next chapter.



Through learning about the instruments and methods of modern physical 

chemistry and meeting researchers at work today, students gain an 

appreciation for the practical applications of this science to many � elds.

Active research, tools, 

and techniques

Tools of the Trade sections 

highlight the design and 

operation of commonly used 

experimental apparatuses and 

how they relate to the principles 

discussed in the chapter.

Biosketches highlight a diverse 

array of contemporary scientists and 

engineers and their current research 

relating to physical chemistry.  



A discrete summary of the prerequisite mathematics and 

physics adds � exibility and convenience by incorporating 

the necessary math tools in a single chapter.

Conceptual Insight and Mathematical 

Precision in a Real World Context

Chapter A provides a comprehensive summary 

of the physical laws and mathematical tools used 

to develop the principles of physical chemistry.



The distinctive use of color in the text’s mathematical narrative allows 

students to identify important equation elements (such as the partition 

function) even as they take on different mathematical forms.

Derivations Demysti� ed

Thoughtful color-coding in key 

equations makes it easier for students 

to follow the development of complex 

derivations as well as recognize 

common mathematical elements that 

appear in the representation of different 

physical situations.

Derivations are made transparent and 

comprehensible to students without sacri� ce 

of mathematical rigor. Colored annotations 

provide crucial help to students by explaining 

important steps in key derivations.

Summaries spell out the essential results 

of dif� cult derivations, making it easier to 

accommodate the needs of different courses, 

the preferences of different instructors, and the 

study and review habits of different students. 



With numerous worked examples, robust review support, a wealth of end-of-chapter 

problems, and a solutions manual written by the text’s author, students have everything 

they need to master the basics of physical chemistry.

Worked Examples provide students 

with context of the problem, clearly 

describe the parameters of the 

problem, and walk students step-by-

step toward the solution.

End-of-chapter materials bring 

students full circle, helping them 

assess their grasp of current 

chapter concepts and synthesize 

information from prior chapters.

A comprehensive online solutions manual, 

written by author Andrew Cooksy, is � lled with 

unique solution sets emphasizing qualitative 

results to help students move beyond the 

math to a deeper conceptual understanding. 

Supporting students’ quest 

for deeper understanding
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Student Tutorials

Physical chemistry tutorials reinforce conceptual 

understanding. Over 460 tutorials are available in 
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3

GOAL  Why Are We Here?

he goal of this textbook is a concise and elegant exposition of the 
 theoretical framework that forms the basis for all modern chemistry. To 
accomplish this, we are going to draw regularly on your knowledge of 
 algebra, geometry, calculus, mechanics, electromagnetism, and  chemistry. 
Physical chemistry is both rewarding and challenging in this way.

Mathematics of several varieties is our most valuable tool, and in this 
text we shall be interested in it only as a tool. It is not necessary, for 
 example, that you remember how to derive the algebraic solution to the 
integral 1 ln x dx, but it will help if you know that an algebraic solution 
exists and how to use it (because with it we will obtain a useful equation 
for difusion).his chapter is a summary of the math and physics that 
serve as our starting point as we explore the theory of chemistry. If you 
are embarking on this course, you may wish to review any of the  following 
topics that appear alarmingly unfamiliar at irst glance.

A.1  Mathematics
Algebra and Units

Basic Formula Manipulations

he use of algebra in this text is similar to its use in introductory  physics 
and chemistry courses. We will routinely encounter the basic manipula-
tions of variables in equations, especially to solve for one unknown in 
terms of several known constants. A tough example would be to solve for 
nB in the equation

TB = TB� c VT - VA

VT - VA�
d - nBR>CB

Introduction: Tools 
from Math and 
Physics

A

CB

Introduction: Tools 
from Math and 
Physics

A

PART III 

REACTIVE 

SYSTEMS

PART II 

NON-REACTIVE 

MACROSCOPIC 

SYSTEMS

PART I 

EXTRAPOLATING 

FROM MOLECULAR 

TO MACROSCOPIC 

SYSTEMS



4    CHAPTER A  Introduction: Tools from Math and Physics

he key is to see that a solution must be available, because the variable we are 
solving for appears in only one place, and a series of operations will allow us to 
isolate it on one side of the equation. Once we recognize that, then we can 
methodically undo the operations on one side of the equation to leave nB: divide 
both sides by TB�, take the logarithm of both sides to bring nB down to earth from 
the exponent, and inally divide both sides by the factor that leaves nB alone on 
one side of the equation. hose steps eventually bring us to

nB = -
CB

R
 

lnaTB

TB�
b

lnaVT - VA

VT - VA�
b .

One issue that makes the algebra something of a challenge is the notation. To put 
it mildly, we will use a lot of algebraic symbols. In fact, with the exception of “O,” 
which looks too much like a zero, we use the entire Roman alphabet at least twice, 
and most of the Greek.1 he symbols have been chosen in hopes of an optimal com-
bination of (a) preventing the same symbol from appearing with diferent meanings 
in the same chapter, (b) adherence to the conventional usage in the scientiic litera-
ture, and (c) clarity of meaning. Unfortunately, these three aims cannot always be 
satisied simultaneously. Physical chemistry is a synthesis of work done by pioneers 
in mathematics, physics, and chemistry, oten without any intention that the results 
would one  day become integrated into a general theory of chemistry. We bring 
together many ields that evolved independently, and the way these ields it together 
is one of the joys of this course. Admittedly, the complexity of the notation is not.

he text provides guides to the notation used in long derivations and sample 
calculations to show how the notation is used. Please be aware, however, that no 
textbook gimmick can substitute for the reader’s understanding of the parame-
ters represented by these symbols. If you recognize the diference between the 
fundamental charge e and the base of the natural logarithm e, you are in no 
 danger of confusing the two, even though they are both represented by the 
 letter “e,” sometimes appearing in the same equation.

Unit Analysis and Reasonable Answers

One of the most helpful tools for checking algebra and for keeping these many 
symbols under control is unit analysis. If a problem asks you to solve for the 
value of some variable �, and you’re not certain what units you will get in the 
end, then it’s likely that the meaning of � has not been made entirely clear. In 
many cases, including viscosities and wavefunctions, the units are not obvious 
from the variable’s deinition in words but are easily determined from an impor-
tant equation in which the variable appears. Quick: how do you write the units 
for pressure in terms of mass and distance and time? If you recall the deinition 
of the pressure as force per unit area

P =
F

A

1If the lower case Greek letter upsilon (y) didn’t look so much like an italic “v” (v), there are at least 
two places it would have been used. It’s bad enough that v and the Greek nu (n) are so similar and 
sometimes appear in the same equation.
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and know that force has units of mass times acceleration, then pressure must 
have units of

 
force

distance2 =
mass *  speed/time

distance2 =
mass *  distance/time2

distance2

=
mass

distance *  time2 = kg m- 1 s- 2. (A.1)

It will not be worthwhile to attempt a problem before understanding the 
 variables involved.

Unit analysis is also a useful guard against algebraic mistakes. An error in 
 setting up an algebraic solution oten changes the units of the answer, and a 
check of the answer’s units will show the mistake. his does not protect 
against many other mistakes, however, such as dividing instead of multiplying 
by 1010 to convert a length from meters to angstroms. In such cases, there is 
no   replacement for knowing what range of values is appropriate for the 
 quantity. Recognizing a reasonable value for a particular variable is primarily 
a  matter of  familiarity with some typical parameters. he values given in  
Table A.1 are  meant only to give common orders of magnitude for various 
quantities. Answers  difering by  factors of 10 from these may be possible, but 
not common.

TABLE A.1 Some typical values for parameters in chemical problems. hese are meant 
only as a rough guide to expected values under typical conditions.

Parameter Value (in typical units)

chemical bond length 1.5 Å

chemical bond energy 400 kJ mol - 1

molecular speed 200 m s - 1

mass density (solid or liquid) 1 g cm - 3

EXAMPLE A.1 Unreasonable Answers

PROBLEM Unit analysis and recognition of a reasonable value can prevent errors such as those that resulted 
in the following answers. Identify the problem with these results for the requested quantity:

Quantity Wrong answer

the density of NaCl(s) 1.3 # 10- 24 g cm - 3

the density of NaCl(s) 3.3 # 107 g cm - 1

bond length of CsI 12.3 m

speed of a molecule 4.55 # 1011 m s - 1

momentum of electron 5 # 10- 10 m s - 1

SOLUTION Each of those examples gives an answer of entirely the wrong magnitude (which could arise 
from using the wrong conversion factor, the wrong units, or both).
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In many problems, the units themselves require some algebraic manipulation 
because several units are products of other units. For example, the unit of 
 pressure, 1 kg m- 1 s- 2, obtained in Eq. A.1, is called the “pascal.” We shall also 
encounter an equation

En = -
Z2mee

4

2(4pe0)2n2
U

2  ,

in which En has units of energy, Z  and n are unitless, me has units of mass, e has 
units of charge, e0 has units of charge2 energy-1 distance-1, and U has units 
of  energy *  time. he units on each side of the equation must be identical, 
and this we can show by substituting in the appropriate units for mass, charge, 
and energy:

1 J = 1 
(kg)(C)4

(C2
 

  J- 1 m- 1)2
 (J s)2

= 1  

(kg)(C)4

C4 s2/m2

= 1 kg m2 s- 2
= 1 J. (A.2)

his may be a good place to remind you about that bothersome factor of 4pe0 
and some other aspects of the SI units convention.

SI Units

he accepted standard for units in the scientiic literature is the Système 
International (SI), based on the meter, kilogram, second, coulomb, kelvin, 
mole, and candela.2 It is acceptable SI practice to use combinations of these 
units and to convert up or down by factors of 1000. So, for example, the SI unit 
of force should have units of (mass *  acceleration), or kg m s- 2, a unit 
 commonly called the newton and abbreviated N. Energy has units of force *  
distance, so the SI unit is kg m2 s- 2, also called the joule and abbreviated J. But 
the joule is inconveniently small for measuring, say, the energy released in a 
 chemical reaction, so one could use the kilojoule (103 J) and remain true to the 
SI standard. We’ll give special attention to energy units shortly.

A practical advantage of a single system for all physical units is that—if 
you’re careful—the units take care of themselves. Allowing for the factors of 
1000, if all the quantities on one side of an equation are in SI units, the value 

Quantity Wrong answer Why unreasonable

the density of NaCl(s) 1.3 # 10- 24 g cm - 3 too small

the density of NaCl(s) 3.3 # 107 g cm - 1 wrong units

bond length of CsI 12.3 m too big

speed of a molecule 4.55 # 1011 m s - 1 too big (greater than speed of light)

momentum of electron 5 # 10- 10 m s - 1 wrong units

2If you don’t recall the candela, that’s understandable. It’s the unit of luminous intensity, and with 
that, makes its last appearance in this text.
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on the other side will also be in SI units. If an object of mass 2.0 kg rests  
on a table, subject to the gravitational acceleration of 9.8 m s - 2, then I 
can calculate the force it exerts on the table by multiplying the mass and  
the acceleration,

F = ma = (2.0 kg)(9.8 m s- 2) = 20 N,

and I can be certain that the inal value is in SI units for force, namely newtons.
Standardization of units takes time, however, and you can be certain that the 

chemical data you encounter in your career will not adhere to one standard. 
One formerly common set of units, now widely discouraged, is the Gaussian or 
CGS system, similar to SI except that it replaces the meter, kilogram, and 
 coulomb with the centimeter, gram, and electrostatic unit, respectively. Another 
convention, now on the rise, is the set of atomic units, for which all units are 
expressed as combinations of fundamental physical constants such as the  electron 
mass me  and the elementary charge e.

he SI system, while having some features convenient to engineering, 
 sufers from one inconvenience in our applications: elementary calculations 
that include electric charges or magnetic ields require the use of constants 
called the permeability m0 and permittivity e0 of free space. Although these 
 constants originally appeared with a physical meaning attached, for our 
 purposes they are merely conversion factors. In particular, the factor 4pe0 
converts SI units of coulomb squared to units of energy times distance, J # m. 
For  example, the energy of repulsion between two electrons at a separation of 
d = 1.0 # 10- 10 m is

e2

4pe0d
=

(1.602 # 10- 19 C)2

(1.113 # 10- 10 C2  J- 1 m- 1)(1.0 # 10- 10 m)
= 2.306 # 10- 18 J. (A.3)

In contrast, the atomic and CGS units fold this conversion into the  deinition 
of the charge, and the factor of 4pe0 would not appear in the calculation. For 
all equations in this text involving the forces between charged particles, we 
 conform to the standards of the day and use SI units and the associated 
 factor of 4pe0.

In other cases, however, we will not adhere strictly to the SI standard. Even 
allowing for factors of 1000, I don’t know any chemists who express molecular 
dipole moments in coulomb meters, a unit too large for its purpose by 30 orders 
of magnitude (not even preixes like “micro-” and “nano-” are enough to save it). 
he conventional unit remains the debye, which is derived from CGS units 
(adjusted by 18 orders of magnitude, it must be said) and just the right size for 
measuring typical bond dipoles. he angstrom (Å) also remains in wide use in 
chemistry because it is a metric unit (1 Å = 10 - 10 m) that falls within a factor 
of 2 of almost any chemical bond length.

Of all the physical parameters, energy has the greatest diversity in commonly 
used scientiic units. here are several ways to express energy, even ater 
 excluding all sorts of nonmetric energy units (such as the British thermal unit, 
kilowatt-hour, foot-pound, ton of TNT, and—most beloved of chemists—the 
calorie). Other conventions appear when discussing the interaction of  radiation 
with matter, for which it is common to quantify energy in terms of the frequency 
(s - 1) or reciprocal wavelength (cm - 1) of the radiation. Under the proper 
assumptions, it may also be informative to convert an energy to a corresponding 
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temperature, in units of kelvin. Typical laboratory samples of a  compound have 
numbers of molecules in the range of 1020 or more, and  molecular  energies are 
therefore oten given in terms of the energy per mole of the  compound (e.g., 
kJ mol - 1). hese cases will be explained as they appear, and they are  summarized 
in the conversion table for energies on this textbook’s back endpapers.

Once these non-SI units are introduced, please make sure you are comfortable 
with the algebra needed to convert from one set of units to another. his one 
skill, mundane as it may seem, will likely be demanded of you in any career in 
science or engineering. Famous and costly accidents have occurred because this 
routine procedure was not given its due attention.3

Complex Numbers

Complex numbers are composed of a real number and an imaginary number 
added together. For our purposes, a complex number serves as a sort of  two- 
dimensional number; the imaginary part contains data on a measurement 
 distinct from the data given by the real part. For example, a sinusoidal wave that 
varies in time may be described by a complex number in which the real part 
gives the shape of the wave at the current time and the imaginary part describes 
what the wave will look like a short time later.

he imaginary part of any complex number is a real number multiplied by 
i K  2-1. (he symbol “K” is used throughout this text to indicate a deinition, 
as opposed to the “=” symbol, used for equalities that can be proved mathemati-
cally.) his relationship between i and -1 allows the imaginary part of a complex 
number to inluence the real-number results of an algebraic operation. For 
example, if a and b are both real numbers, then a + ib is complex, with a the 
real part and ib the imaginary part. he complex conjugate of a + ib, written 
(a + ib)*, is equal to a - ib, and the product of any number with its complex 
conjugate is a real number:

(a + ib)(a - ib) = a2
- iba + iba - i2b2

= a2
+ b2. (A.4)

Notice that the value of b—even though it was contained entirely in the imagi-
nary parts of the two original complex numbers—contributes to the value of the 
real number quantity that results from this operation.

Many of the mathematical functions in the text are complex, but multiplica-
tion by the complex conjugate yields a real function, which can correspond 
directly to a measurable property. For that reason, we oten judge the validity of 
the functions by whether we can integrate over the product f  *f . In this text, 
a well-behaved function f  is single-valued, inite at all points, and yields a inite 
value when f  *f  is integrated over all points in space. To be very well-behaved, 
the function and its derivatives should also be continuous functions, but we will 
use a few functions that are naughty in this regard.

3A prominent example is the loss in 1999 of the unmanned Mars Climate Orbiter, a probe that 
entered the Martian atmosphere too low and burned up because engineers were sending course 
correction data calculated using forces in pounds to an on-board system that was designed to 
accept the data in newtons.
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Trigonometry

Elementary results from trigonometry play an important role in our equations of 
motion, and therefore you should know the deinitions of the sine, cosine, and 
tangent functions (and their inverses) as signed ratios of the lengths of the sides 
of a right triangle. Using the triangle drawn in Fig. A.1, with sides of length y, x, 
and r, we would deine these functions as follows:

 sin f K
y

r
   csc f K

1

sin f
=

r

y

  cos f K
x

r
   sec f K

1

cos f
=

r

x
 (A.5)

 tan f K
y

x
   cot f K

1

tan f
=

x

y

he sign is important. If f lies between 90 �  and 270 � , then the x value becomes 
negative, so cos f and sec f would be less than zero. Similarly, sin f and csc f are 
negative for f between 180 �  and 360 � .

Please also make sure you are comfortable using the trigonometric identities 
listed in Table A.2. hese are algebraic manipulations that may allow us to 
 simplify equations or to isolate an unknown variable.

EXAMPLE A.2 Complex Conjugates

PROBLEM Write the complex conjugate f  * for each of the following expressions f  and show that the value 
of f  *f  is real.

1.  5 + 5i

2. -x> i
3. cos x - i sin x

SOLUTION

1. f  * = 5 - 5i

  f  *f =  (5 + 5i)(5 - 5i) = 25 + 25 = 50

2. First we would like to put this in the form a + ib, so we multiply by ii to bring the factor of i into the 
numerator:

f = -
x

i
a i

i
b = -

ix

-1
=.

he real part of this function is zero, but for any complex conjugate, we change the sign on the  imaginary 
term:   f  * = - ix

  f  *f = (ix)(- ix) = - i2x2
= x2

3. f  * = cos x + i sin x

  f  *f = cos2 x - i2 sin2 x = cos2 x + sin2 x = 1

x

r
y

ϕ

▲ FIGURE A.1 Right triangle 

used to deine trigonometric 

functions of the angle F.




